Answer:
Step-by-step explanation:
Given that:
width b=100mm
depth h=150 mm
length L=2 m =200mm
point load P =500 N
Calculate moment of inertia

Point C is subjected to bending moment
Calculate the bending moment of point C
M = P x 1.5
= 500 x 1.5
= 750 N.m
M = 750 × 10³ N.mm
Calculate bending stress at point C

Calculate the first moment of area below point C

Now calculate shear stress at point C


Calculate the principal stress at point C
![\sigma_(1,2)=(\sigma_x+\sigma_y)/(2) \pm\sqrt{((\sigma_x-\sigma_y)/(2) ) + (\tau)^2} \\\\=(666.67+0)/(2) \pm\sqrt{((666.67-0)/(2) )^2 \pm(44.44)^2} \ [ \sigma_y=0]\\\\=333.33\pm336.28\\\\ \sigma_1=333.33+336.28\\=669.61KPa\\\\\sigma_2=333.33-336.28\\=-2.95KPa](https://img.qammunity.org/2021/formulas/physics/college/uox69mw7go2bwbiqilnoaqzc2khld19i47.png)
Calculate the maximum shear stress at piont C
