Answer:
![\bar X \sim N(\mu , (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/sailtwjamlyrxe5pna7bmzm9a2rvkr5244.png)
And replacing:
![\mu_(\bar X)= 5](https://img.qammunity.org/2021/formulas/mathematics/college/i01ypb4b4mzkp7o0wgujtcnxcwuwbnl08y.png)
And the deviation:
![\sigma_(\bar X)= (0.283)/(√(5))= 0.126](https://img.qammunity.org/2021/formulas/mathematics/college/tjkuzq6lrrgh0bvx8dwsh37e00yq3csyvn.png)
And the distribution is given:
![\bar X \sim N(\mu= 0.08, \sigma= 0.126)](https://img.qammunity.org/2021/formulas/mathematics/college/vvzg4eawyn74is2qyde2uu16wk0qegzzz6.png)
Explanation:
For this case we have the following info given :
![\mu= 5. \sigma^2 =0.08](https://img.qammunity.org/2021/formulas/mathematics/college/j4u8grxu49x4ndmkoe3368yudsoxeube9o.png)
And the deviation would be
![\sigma = √(0.08)= 0.283](https://img.qammunity.org/2021/formulas/mathematics/college/c2x9ur0aq8npoul4goj7pp7ro4m7icmmgk.png)
For this case we select a sample size of n = 5 and the distirbution for the sample mean would be:
![\bar X \sim N(\mu , (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/sailtwjamlyrxe5pna7bmzm9a2rvkr5244.png)
And replacing:
![\mu_(\bar X)= 5](https://img.qammunity.org/2021/formulas/mathematics/college/i01ypb4b4mzkp7o0wgujtcnxcwuwbnl08y.png)
And the deviation:
![\sigma_(\bar X)= (0.283)/(√(5))= 0.126](https://img.qammunity.org/2021/formulas/mathematics/college/tjkuzq6lrrgh0bvx8dwsh37e00yq3csyvn.png)
And the distribution is given:
![\bar X \sim N(\mu= 0.08, \sigma= 0.126)](https://img.qammunity.org/2021/formulas/mathematics/college/vvzg4eawyn74is2qyde2uu16wk0qegzzz6.png)