Answer:
The maximum height reached by the rocket is of 938.56 feet.
Explanation:
The height y, after x seconds, is given by a equation in the following format:
![y(x) = ax^(2) + bx + c](https://img.qammunity.org/2021/formulas/mathematics/college/vr6hkdazr0yspsq1tsxy2mlbjnvthzaluf.png)
If a is negative, the maximum height is:
![y(x_(v))](https://img.qammunity.org/2021/formulas/mathematics/college/yyfk35qmo53v7be1hlrd6psrx4b6x6skpw.png)
In which
![x_(v) = -(b)/(2a)](https://img.qammunity.org/2021/formulas/mathematics/college/38fhch9dbuncqalk2d60e2jfrasyve3yfl.png)
In this question:
![y(x) = -16x^(2) + 230x + 112](https://img.qammunity.org/2021/formulas/mathematics/college/7m9ib5at586hh7vt6zj27jikbnw9esc44g.png)
So
![a = -16, b = 230, c = 112](https://img.qammunity.org/2021/formulas/mathematics/college/t5fjoaejt3al6qeorhlksdl8pr0qfsuckq.png)
Then
![x_(v) = -(230)/(2*(-16)) = 7.1875](https://img.qammunity.org/2021/formulas/mathematics/college/eetkiv538667mzkivyb14jutp7iw6ldn5z.png)
![y(7.1835) = -16*(7.1835)^(2) + 230*7.1835 + 112 = 938.56](https://img.qammunity.org/2021/formulas/mathematics/college/plked7x0b66dnhemtyar9vorimgd0w199s.png)
The maximum height reached by the rocket is of 938.56 feet.