Answer:
Explanation:
The standard form of a parabola is given by the following equation:
![(x-h)^(2) =4p(y-k)](https://img.qammunity.org/2021/formulas/mathematics/college/2uifjkaxxbq1hjgmedldm8ybxhxvzkb6c1.png)
Where the focus is given by:
![F(h,k+p)](https://img.qammunity.org/2021/formulas/mathematics/college/t39oc0qwze8kc7m4wwfvanwuift5xqask9.png)
The vertex is:
![V=(h,k)](https://img.qammunity.org/2021/formulas/mathematics/college/a9857xampcizbau7hw4usf87m6izuys9mu.png)
And the directrix is:
![y-k+p=0](https://img.qammunity.org/2021/formulas/mathematics/college/96xf9iig0colfys9ia71a2uavvuntpucv3.png)
Now, using the previous equations and the information provided by the problem, let's find the equation of the parabola.
If the focus is (-6,6):
![F=(h,k+p)=(6,-6)](https://img.qammunity.org/2021/formulas/mathematics/college/ye8qa6d0t9va11nj20pvxyct3jbm7peqrs.png)
Hence:
![h=6\\\\k+p=-6\hspace{10}(1)](https://img.qammunity.org/2021/formulas/mathematics/college/brvg77luojgnp8px0ck9rw7r7bi50y3igy.png)
And if the directrix is
:
![-2-k+p=0\\\\k-p=-2\hspace{10}(2)](https://img.qammunity.org/2021/formulas/mathematics/college/t5inq1dr4hytixnibm2rqqq2q7fa65wfw1.png)
Using (1) and (2) we can build a 2x2 system of equations:
![k+p=-6\hspace{10}(1)\\k-p=-2\hspace{10}(2)](https://img.qammunity.org/2021/formulas/mathematics/college/ydanmzto77kh58q8i2kpkx7b3xcxs56tt3.png)
Using elimination method:
(1)+(2)
![k+p+k-p=-6+(-2)\\\\2k=-8\\\\k=-(8)/(2)=-4\hspace{10}(3)](https://img.qammunity.org/2021/formulas/mathematics/college/v2oh7gk7ek4wkyckxw9rqdc2sepwgwgnc8.png)
Replacing (3) into (1):
![-4+p=-6\\\\p=-6+4\\\\p=-2](https://img.qammunity.org/2021/formulas/mathematics/college/1lcsg8myx90rno1auqwm2061cza97friux.png)
Therefore:
![(x-6)^(2) =4(-2)(y-(-4)) \\\\(x-6)^(2) =-8(y+4)](https://img.qammunity.org/2021/formulas/mathematics/college/lqjpka4hq7e0c33a5gb0z3hbke89hlv08f.png)
So, the correct answer is:
Option 3