146k views
3 votes
If f(x)=ln(sin(2x)), f''(π/4) is equal to​

User Rumca
by
5.3k points

1 Answer

2 votes

Use the chain rule to compute the second derivative:


f(x)=\ln(\sin(2x))

The first derivative is


f'(x)=(\ln(\sin(2x)))'=((\sin(2x))')/(\sin(2x))=(\cos(2x)(2x)')/(\sin(2x))=(2\cos(2x))/(\sin(2x))


f'(x)=2\cot(2x)

Then the second derivative is


f''(x)=(2\cot(2x))'=-2\csc^2(2x)(2x)'


f''(x)=-4\csc^2(2x)

Then plug in π/4 for x :


f''\left(\frac\pi4\right)=-4\csc^2\left(\frac{2\pi}4\right)=-4

User Lnjuanj
by
5.6k points