199k views
4 votes
Q‒4. Suppose A is the set composed of all ordered pairs of positive integers. Let R be the relation defined on A where (a,b)R(c,d) means that a+d=b+c.

Prove that R is an equivalence relation.
Find [(2,4)].

User Dapeng
by
8.0k points

1 Answer

4 votes

Answer:

Explanation:

REcall that given a set A, * is a equivalence relation over A if

- for a in A, then a*a.

- for a,b in A. If a*b, then b*a.

- for a,b,c in A. If a*b and b*c then a*c.

Consider A the set of all ordered pairs of positive integers.

- Let (a,b) in A. Then a+b = a+b. So, by definition (a,b)R(a,b).

- Let (a,b), (c,d) in A and suppose that (a,b)R(c,d) . Then, by definition a+d = b+c. Since the + is commutative over the integers, this implies that d+a = c+b. Then (c,d)R(a,b).

- Let (a,b),(c,d), (e,f) in A and suppose that (a,b)R(c,d) and (c,d)R(e,f). Then

a+d = b+c, c+f = d+e. We have that f = d+e-c. So a+f = a+d+e-c. From the first equation we find that a+d-c = b. Then a+f = b+e. So, by definition (a,b)R(e,f).

So R is an equivalence relation.

[(a,b)] is the equivalence class of (a,b). This is by definition, finding all the elements of A that are equivalente to (a,b).

Let us find all the possible elements of A that are equivalent to (2,4). Let (a,b)R(2,4) Then a+4 = b+2. This implies that a+2 = b. So all the elements of the form (a,a+2) are part of this class.

User Alfonx
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.