Answer:
![\fbox{\begin{minipage}{11em}(f - g)(x) = -2x(2x - 5)\end{minipage}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/oqzun1w7xvq7sqtjzgbr4vi1gk6atml14d.png)
Explanation:
Given:
![f(x) = -x^(2) + 6x - 1 \\ g(x) = 3x^(2) - 4x - 1\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/lbo1x44b5e5fcglzzzk450h9vqdv8zp0gq.png)
Solve for:
![(f - g)(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wsbznp4oy549k4hza8ovw1y7lwfbr7n4.png)
Solution:
Perform the subtraction:
![(f - g)(x) = (-x^(2) + 6x - 1) - (3x^(2) - 4x - 1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/96l4r0ktlrwarle2tictfb4cg6nj5s3ovl.png)
Eliminate the parenthesis (notice the change in sign of some components):
![(f - g)(x) = -x^(2) + 6x - 1 - 3x^(2) + 4x + 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/8tqig4qyh77yfu8lcbrjkzyf8offvh410r.png)
Rearrange the expression:
![(f - g)(x) = (-x^(2) - 3x^(2)) + (6x + 4x) + (1 - 1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pqr3q11vlklfhj2c56h5vhbjuzay86n02a.png)
Simplify the expression:
![(f - g)(x) = -4x^(2) + 10x](https://img.qammunity.org/2021/formulas/mathematics/high-school/11oqgrw8q41zub99811t7cbrl5x7p9ciyi.png)
Perform the inverse of associative property:
![(f - g)(x) = -2x(2x - 5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lrmdo56zfxh83y687mshlkrsid40er9nke.png)
Hope this helps!
:)