42.2k views
4 votes
Solve x2 - 4x - 7 = 0 by completing the square. What are the solutions?

1 Answer

5 votes

Answer:


x=2+√(11),\:x=2-√(11)

Explanation:


x^2-4x-7=0\\\mathrm{Solve\:with\:the\:quadratic\:formula}\\Quadratic\:Equation\:Formula\\\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)\\\mathrm{For\:}\quad a=1,\:b=-4,\:c=-7:\quad x_(1,\:2)=(-\left(-4\right)\pm √(\left(-4\right)^2-4\cdot \:1\left(-7\right)))/(2\cdot \:1)\\x=(-\left(-4\right)+√(\left(-4\right)^2-4\cdot \:1\left(-7\right)))/(2\cdot \:1):\quad 2+√(11)


x=(-\left(-4\right)-√(\left(-4\right)^2-4\cdot \:1\left(-7\right)))/(2\cdot \:1):\quad 2-√(11)\\\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}\\x=2+√(11),\:x=2-√(11)

User Trevor Allred
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories