Solving for a Confidence Interval: Algebra 2 points possible (graded) In the problems on this page, we will continue building the confidence interval of asymptotical level 95% by solving for p as in the video. Recall that R1,…,Rn∼iidBer(p) for some unknown parameter p , and we estimate p using the estimator p^=R¯¯¯¯n=1n∑i=1nRi.
As in the method using a conservative bound, our starting point is the result of the central limit theorem:
In this second method, we solve for values of P that satisfy the inequality volves penat che non esito para polcomp R -P
To do this, we manipulate - ulate | " Vp(1-) 5 < 90/2 into an inequality involving a quadratic function App + Bp+C where A > 0, B, C la/2 into an inequality in depend on 13, 4a/2, and R. Which of the following is the correct inequality?
(We will use find the values of A, B, and C in the next problem.)
1. Ap^2 + Bp + C<0 where A >0.
2. Ap^2 + Bp+C>Owhere A >0.
Let P1 and P2 with 0 a. (P P2)
b. P
c. o
d. P2
e. o