108k views
0 votes
Use the Factor Theorem to examine the polynomial p(x)=6x4+x3−45x2+26x+24. Which binomial is a factor of p(x)?

2x+3
(3x-2)
(2x-1)
(3x−4)

User Hkidd
by
8.1k points

1 Answer

3 votes

Answer:

(D) 3x−4

Explanation:

Factor Theorem

Given a polynomial P(x) and a linear function x-a, If P(a)=0, then the linear function x-a is a factor of P(a).

In Option A:


L$inear Function =2x+3\\Set 2x+3=0$\\x=-(3)/(2) \\p(x)=6x^4+x^3-45x^2+26x+24\\p(-(3)/(2))=6(-(3)/(2))^4+(-(3)/(2))^3-45(-(3)/(2))^2+26(-(3)/(2))+24\\\\p(-(3)/(2))=-89.25

In Option B


L$inear Function =3x-2\\Set 3x-2=0$\\x=(2)/(3) \\p(x)=6x^4+x^3-45x^2+26x+24\\p((2)/(3))=6((2)/(3))^4+((2)/(3))^3-45((2)/(3))^2+26((2)/(3))+24\\\\p((2)/(3))=22.8

In Option C


L$inear Function =2x-1\\Set 2x-1=0$\\x=(1)/(2) \\p(x)=6x^4+x^3-45x^2+26x+24\\p((1)/(2) )=6((1)/(2) )^4+((1)/(2) )^3-45((1)/(2) )^2+26((1)/(2) )+24\\\\p((1)/(2) )=26.25

In Option D


L$inear Function =3x-4\\Set 3x-4=0$\\x=(4)/(3) \\p(x)=6x^4+x^3-45x^2+26x+24\\p((4)/(3) )=6((4)/(3))^4+((4)/(3) )^3-45((4)/(3) )^2+26((4)/(3))+24\\\\p((4)/(3) )=0

We can see that only Option D: 3x−4 gives a result of 0. Therefore, by the factor theorem, it is a factor of the polynomial.

User Katya
by
7.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories