Answer:
(-2.60, -6.80)
Explanation:
The new coordinates can be found by multiplying by the rotation matrix:
![\left[\begin{array}{c}x'&y'\end{array}\right]=\left[\begin{array}{cc}cos(\theta)&-sin(\theta)\\sin(\theta)&cos(\theta)\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/m9gl1i6uykylvuqlplufls6tvjkb513pa2.png)
That is, ...
x' = x·cos(175°) -y·sin(175°) = 2(-0.9962) -7(0.0872) = -2.60
y' = x·sin(175°) +y·cos(175°) = 2(0.0872) +7(-0.9962) = -6.80
The new coordinates are ...
(x', y') = (-2.60, -6.80)