20.9k views
2 votes
Which expression is equivalent to (StartFraction 4 m n Over m Superscript negative 2 Baseline n Superscript 6 Baseline EndFraction) Superscript negative 2? Assume m not-equals 0, n not-equals 0. StartFraction n Superscript 6 Baseline Over 16 m Superscript 8 Baseline EndFraction StartFraction n Superscript 10 Baseline Over 16 m Superscript 6 Baseline EndFraction StartFraction n Superscript 10 Baseline Over 8 m Superscript 8 Baseline EndFraction StartFraction 4 m cubed Over n Superscript 8 Baseline EndFraction

User Chrille
by
5.2k points

2 Answers

2 votes

Answer:

A

Step-by-step explanation:EDGE (not sure if im right let me know)

User Mintobit
by
5.4k points
7 votes

Question

Which expression is equivalent to
(4mn)/(m^(-2)n^6). Assuming
m \\eq 0; n\\eq 0

Answer:


(4m^3)/(n^5)

Explanation:

Given


(4mn)/(m^(-2)n^6)

Required:

Simplify

To simplify this, we start by splitting each individual function


(4mn)/(m^(-2)n^6) = (4m)/(m^(-2)) * (n)/(n^6)

From laws of indices


(a^x)/(a^y) = a^(x-y)

SO, the above expression can also be expressed the same way


(4m)/(m^(-2)) * (n)/(n^6) = 4m^(1-(-2)) * n^(1-6)


(4m)/(m^(-2)) * (n)/(n^6) = 4m^(1+2)) * n^(1-6)


(4m)/(m^(-2)) * (n)/(n^6) = 4m^(3) * n^(-5)

From laws of indices,


a^(-x) = (1)/(a^x)

So,


(4m)/(m^(-2)) * (n)/(n^6) = 4m^(3) * (1)/(n^5)


(4m)/(m^(-2)) * (n)/(n^6) = (4m^3)/(n^5)

Hence,
(4mn)/(m^(-2)n^6) is equivalent to
(4m^3)/(n^5)

User Vinit Sharma
by
5.6k points