44.2k views
3 votes
Read the proof. Given: m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° Prove: △HKJ ~ △LNP Statement Reason 1. m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° 1. given 2. m∠H + m∠J + m∠K = 180° 2. ? 3. 30° + 50° + m∠K = 180° 3. substitution property 4. 80° + m∠K = 180° 4. addition 5. m∠K = 100° 5. subtraction property of equality 6. m∠J = m∠P; m∠K = m∠N 6. substitution 7. ∠J ≅ ∠P; ∠K ≅ ∠N 7. if angles are equal then they are congruent 8. △HKJ ~ △LNP 8. AA similarity theorem Which reason is missing in step 2?

User Roshan N
by
5.1k points

2 Answers

5 votes

Answer:

B

Explanation:

User Kwiksilver
by
5.1k points
3 votes

Answer:


2. m\angle H+m\angle J +m\angle K =180^(\circ)

Reason: the sum of all interior angles of any triangle is equal to 180º.

Explanation:

1) Organizing

Statement 1. m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° 1. Reason: given

2) Since the sum of all internal angles of any triangle is equal to 180º, just like the formula. N the number of sides of a triangle:


S_(i)=180^(\circ)(n-2)\rightarrow 180(3-2) \therefore S_(i)=180^(\circ)

3) We can also say


m\angle K=180^(\circ)-(m\angle H+m\angle J)\\m\angle K=180^(\circ)-\left ( 30^(\circ)+50^(\circ) \right )\\m\angle K=100^(\circ)

Similarly to the other triangle:


m\angle L=180^(\circ)-(m\angle N+m\angle P)\\m\angle L=180^(\circ)-\left ( 100^(\circ)+50^(\circ) \right )\\m\angle L=30^(\circ)

4) Hence,


2. m\angle H+m\angle J +m\angle K =180

Reason: The sum of interior angles is equal to 180º.

Read the proof. Given: m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° Prove: △HKJ ~ △LNP-example-1
User Piero Divasto
by
5.4k points