Answer:
The length of a is equal to 14.9.
The angle measure of b is equal to 71°.
The length of c is equal to 25.5.
General Formulas and Concepts:
Pre-Calculus
Law of Sines:
![\displaystyle \bold{ (\sin A)/(a) = (\sin B)/(b) = (\sin C)/(c) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/bvb68m9pxpjmcrfxtyxjw7k0deov2ysy3w.png)
Explanation:
Step 1: Define
Identify given from triangle.
Length corresponding with x°: 14.9
Other given angle: 71°
Length corresponding with 71°: 25.5
Step 2: Find Values
- [Law of Sines] Substitute in variables:
![\displaystyle (\sin x^\circ)/(14.9) = (\sin 71^\circ)/(25.5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4vi2wl9lbaag145hfb3iq32s21j4msen6b.png)
- Isolate x° term:
![\displaystyle \sin x^\circ = (14.9 \sin 71^\circ)/(25.5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cxrual6p36t33e06ulfdppc1xfuvzuw71p.png)
- Isolate x°:
![\displaystyle x^\circ = \sin^(-1) \bigg( (14.9 \sin 71^\circ)/(25.5) \bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sreteza3wk334iic585lvklhrce1l9cbki.png)
- Identify variables:
![\displaystyle a = 14.9 , \ b = 71^\circ , \ c = 25.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/dlryqfeogkd248xfm8828stq0ceg1897hl.png)
∴ we have completed the expression using Law of Sines.
---
Topic: Precalculus
Unit: Trigonometry