Answer:
Coordinates of M =
![\left ( -2,4 \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zzu3om9hi2szfd1o5sc5i3nhd9jm6jkqqj.png)
Explanation:
Given: AM:MB = 1:4, A has coordinates (-4, 3) and B has coordinates (6, 8)
To find: coordinates of M
Solution:
According to section formula, if M(x, y) divides line joining points
in ratio
then coordinates of point M are
![\left ( (mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n) \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y2y5rt7peer5tg549ejpkzue590308rhmz.png)
Put
![A(x_1,y_1)=(-4,3)\,,\,B(x_2,y_2)=(6,8)\,,\,m:n=1:4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kf15fg32opmmr0oi8hz6cs1llohdcoq7rx.png)
Therefore,
![(x,y)=\left ( (6-16)/(1+4),(8+12)/(1+4) \right )=\left ( -2,4 \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/53bgqg28p1ugaiga9vx754bot6a81d4y2f.png)