Answer:
a) R = 2.5 Ω, b) R = 1 Ω, c) R = 2R / 3 Ω
Step-by-step explanation:
The resistance configuration can be in series or in parallel, for each one the equivalent resistance can be calculated
series, the equivalent resistance is the sum of the resistances
parallel, the inverse of the equivalent resistance is the inverse of the sum of the resistances
let's apply these principles to each case
case a)
equivalent series resistance
R₁ = 1 +4 = 5 ohm
R₂ = 2 +3 = 5 ohn
these two are in parallel
1 / R = 1/5 +1/5
1 / R = 2/5
R = 2.5 Ω
case B
we solve the parallel
1 / R₁ = ½ + ½ = 1
R₁ = 1 Ω
we solve the resistors in series
R₂ = 1 + 1
R₂ = 2 Ω
finally we solve the last parallel
1 / R = ½ +1/2 = 1
R = 1 Ω
case C
we solve house resistance pair in series
R₁ = R + 2R = 3R
we go to the next mesh
R₂ = R + 2R = 3R
R₃ = R + 2R = 3R
last mesh
R₄ = R + R = 2R
now we solve the parallel of this equivalent resistance
1 / R = 1 / R₁ + 1 / R₂ + 1 / R₃ + 1 / R₄
1 / R = 1 / 3R + 1 / 3R + 1 / 3R + 1 / 2R
1 / R = 3 / 3R + 1 / 2R = 1 / R + 1 / 2R
1 / R = 3 / 2R
R = 2R / 3 Ω