Answer:
a). Center of the circle = (-2, 5)
b). Equation of the line ⇒ y =
![-(4)/(5)x+(58)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8x9zuocuv6d8ir95ro52we5ki5f72e7m0h.png)
Explanation:
Equation of the circle is,
x² + 4x + y²- 10y + 20 = 30
a). [x² + 2(2)x + 4 - 4] + [y²- 2(5)y + 25] - 25 + 20 = 30
[x² + 2(2)x + 4] - 4 + [y² - 2(5)y + 25] - 25 + 20 = 30
(x + 2)² + (y - 5)²- 29 + 20 = 30
(x + 2)² + (y - 5)²- 9 = 30
(x + 2)² + (y - 5)² = 39
By comparing this equation with the standard equation of a circle,
Center of the circle is (-2, 5).
b). A point (2, 10) lies on this circle.
Slope of the line joining this point to the center (-2, 5),
![m_(1)=(y_(2)-y_(1))/(x_(2)-x_(1))](https://img.qammunity.org/2021/formulas/mathematics/high-school/w6gwqzo9e3ianqo75hmn8rf5cwx4rg2hqc.png)
=
![(10-5)/(2+2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fyktzg60xsotp94wb5u19zkve1jmxhtzjl.png)
=
![(5)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a8w36562qkrwyvj2li76ax68ew6tvr3dbj.png)
Let the slope of the tangent which is perpendicular to this line is '
'
Then by the property of perpendicular lines,
![m_(1)* m_(2)=-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/wpjozh22mmnalk6vtplctibdrx0q737t8l.png)
![(5)/(4)* m_(2)=-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/jhqroe8uqu6hv2p0rs2uspqke00yksbi4m.png)
![m_(2)=-(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yt7xepqjx8w8ucmwpzo4ihfdwnob8db2q3.png)
Now the equation of the line passing though (2, 10) having slope
![m_(2)=-(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yt7xepqjx8w8ucmwpzo4ihfdwnob8db2q3.png)
y - y' =
![m_(2)(x-x')](https://img.qammunity.org/2021/formulas/mathematics/high-school/4f779zpjoz8h6o2j8by9k5pxmp7qeo8gmu.png)
y - 10 =
![-(4)/(5)(x-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4g7yt68iho7xrrldusa7lk18tn0jdojgki.png)
y - 10 =
![-(4)/(5)x+(8)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wy7505zzasf33pfjzclfxx35kpimw0qf23.png)
y =
![-(4)/(5)x+(8)/(5)+10](https://img.qammunity.org/2021/formulas/mathematics/high-school/bzi98w9xt2vmcqf0kh4bnmy0h8qa96y4wv.png)
y =
![-(4)/(5)x+(58)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8x9zuocuv6d8ir95ro52we5ki5f72e7m0h.png)
Therefore, equation of the line will be, y =
![-(4)/(5)x+(58)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8x9zuocuv6d8ir95ro52we5ki5f72e7m0h.png)