53.0k views
4 votes
A) In the figure below, a cylinder is compressed by means of a wedge against an elastic constant spring = 12 /. If = 500 , determine what the minimum compression in the spring will be so that the pad does not move. Disregard the weight of the blocks and . The coefficient of friction between and the pad and between the floor and the pad is s = 0.4. Consider that the friction between the cylinder and the vertical walls is negligible

Answer: 4.08 cm.


B) Determine the lowest force required to lift the weight of 750 . The static coefficient of friction between and and between and is s= 0.25, and between and is 's = 0.5. Disregard the weight of the shims and .


Answer : 1095.4 N.

A) In the figure below, a cylinder is compressed by means of a wedge against an elastic-example-1

1 Answer

2 votes

Step-by-step explanation:

A) Draw free body diagrams of both blocks.

Force P is pushing right on block A, which will cause it to move right along the incline. Therefore, friction forces will oppose the motion and point to the left.

There are 5 forces acting on block A:

Applied force P pushing to the right,

Normal force N pushing up and left 10° from the vertical,

Friction force Nμ pushing down and left 10° from the horizontal,

Reaction force Fab pushing down,

and friction force Fab μ pushing left.

There are 2 forces acting on block B:

Reaction force Fab pushing up,

And elastic force kx pushing down.

(There are also horizontal forces on B, but I am ignoring them.)

Sum of forces on A in the x direction:

∑F = ma

P − N sin 10° − Nμ cos 10° − Fab μ = 0

Solve for N:

P − Fab μ = N sin 10° + Nμ cos 10°

P − Fab μ = N (sin 10° + μ cos 10°)

N = (P − Fab μ) / (sin 10° + μ cos 10°)

Sum of forces on A in the y direction:

N cos 10° − Nμ sin 10° − Fab = 0

Solve for N:

N cos 10° − Nμ sin 10° = Fab

N (cos 10° − μ sin 10°) = Fab

N = Fab / (cos 10° − μ sin 10°)

Set the expressions equal:

(P − Fab μ) / (sin 10° + μ cos 10°) = Fab / (cos 10° − μ sin 10°)

Cross multiply:

(P − Fab μ) (cos 10° − μ sin 10°) = Fab (sin 10° + μ cos 10°)

Distribute and solve for Fab:

P (cos 10° − μ sin 10°) − Fab (μ cos 10° − μ² sin 10°) = Fab (sin 10° + μ cos 10°)

P (cos 10° − μ sin 10°) = Fab (sin 10° + 2μ cos 10° − μ² sin 10°)

Fab = P (cos 10° − μ sin 10°) / (sin 10° + 2μ cos 10° − μ² sin 10°)

Sum of forces on B in the y direction:

∑F = ma

Fab − kx = 0

kx = Fab

x = Fab / k

x = P (cos 10° − μ sin 10°) / (k (sin 10° + 2μ cos 10° − μ² sin 10°))

Plug in values and solve.

x = 500 N (cos 10° − 0.4 sin 10°) / (12000 (sin 10° + 0.8 cos 10° − 0.16 sin 10°))

x = 0.0408 m

x = 4.08 cm

B) Draw free body diagrams of both blocks.

Force P is pushing block A to the right relative to the ground C, so friction force points to the left.

Block A moves right relative to block B, so friction force on A will point left. Block B moves left relative to block A, so friction force on B will point right (opposite and equal).

Block B moves up relative to the wall D, so friction force on B will point down.

There are 5 forces acting on block A:

Applied force P pushing to the right,

Normal force Fc pushing up,

Friction force Fc μ₁ pushing left,

Reaction force Fab pushing down and left 15° from the vertical,

and friction force Fab μ₂ pushing up and left 15° from the horizontal.

There are 5 forces acting on block B:

Weight force 750 n pushing down,

Normal force Fd pushing left,

Friction force Fd μ₁ pushing down,

Reaction force Fab pushing up and right 15° from the vertical,

and friction force Fab μ₂ pushing down and right 15° from the horizontal.

Sum of forces on B in the x direction:

∑F = ma

Fab μ₂ cos 15° + Fab sin 10° − Fd = 0

Fd = Fab μ₂ cos 15° + Fab sin 15°

Sum of forces on B in the y direction:

∑F = ma

-Fab μ₂ sin 15° + Fab cos 10° − 750 − Fd μ₁ = 0

Fd μ₁ = -Fab μ₂ sin 15° + Fab cos 15° − 750

Substitute:

(Fab μ₂ cos 15° + Fab sin 15°) μ₁ = -Fab μ₂ sin 15° + Fab cos 15° − 750

Fab μ₁ μ₂ cos 15° + Fab μ₁ sin 15° = -Fab μ₂ sin 15° + Fab cos 15° − 750

Fab (μ₁ μ₂ cos 15° + μ₁ sin 15° + μ₂ sin 15° − cos 15°) = -750

Fab = -750 / (μ₁ μ₂ cos 15° + μ₁ sin 15° + μ₂ sin 15° − cos 15°)

Sum of forces on A in the y direction:

∑F = ma

Fc + Fab μ₂ sin 15° − Fab cos 15° = 0

Fc = Fab cos 15° − Fab μ₂ sin 15°

Sum of forces on A in the x direction:

∑F = ma

P − Fab sin 15° − Fab μ₂ cos 15° − Fc μ₁ = 0

P = Fab sin 15° + Fab μ₂ cos 15° + Fc μ₁

Substitute:

P = Fab sin 15° + Fab μ₂ cos 15° + (Fab cos 15° − Fab μ₂ sin 15°) μ₁

P = Fab sin 15° + Fab μ₂ cos 15° + Fab μ₁ cos 15° − Fab μ₁ μ₂ sin 15°

P = Fab (sin 15° + (μ₁ + μ₂) cos 15° − μ₁ μ₂ sin 15°)

First, find Fab using the given values.

Fab = -750 / (0.25 × 0.5 cos 15° + 0.25 sin 15° + 0.5 sin 15° − cos 15°)

Fab = 1151.9 N

Now, find P.

P = 1151.9 N (sin 15° + (0.25 + 0.5) cos 15° − 0.25 × 0.5 sin 15°)

P = 1095.4 N

A) In the figure below, a cylinder is compressed by means of a wedge against an elastic-example-1
A) In the figure below, a cylinder is compressed by means of a wedge against an elastic-example-2
User Emmanuel Guiton
by
4.3k points