Answer:
![-(240)/(289)](https://img.qammunity.org/2023/formulas/mathematics/college/s010ik87sztrfr83h13lexgqq8yb4dxdec.png)
=========================================================
Step-by-step explanation:
Use the pythagorean trig identity
and plug in the fact that
![\cos(\theta) = (8)/(17)\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/a6szvyeleskkf28ozbzdddzzw77qyeu189.png)
Isolating sine leads to
. I'm skipping the steps here, but let me know if you need to see them.
The result is negative because we're in quadrant 4, when y < 0 so it's when sine is negative.
Therefore,
![\sin(2\theta) = 2\sin(\theta)\cos(\theta)\\\\\sin(2\theta) = 2*\left(-(15)/(17)\right)*\left((8)/(17)\right)\\\\\sin(2\theta) = -(240)/(289)\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/trpjxkigzf1kw3gacgpk87tegakrnx7api.png)