Answer:
a). Area = 54 square units
b). Perimeter = 33.7 units
Explanation:
Vertices of the triangle ABC are A(-4, -2), B(1, 7) and C(8, -2).
(a). Area of the triangle ABC =
(Absolute value)
By substituting the values from the given vertices,
Area =
![(1)/(2)[(-4)(7+2)+(1)(-2+2)+8(-2-7)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/1i7munkk8j32njngyehiu49dru878vdy2t.png)
=
![(1)/(2)[-36+0-72]](https://img.qammunity.org/2021/formulas/mathematics/high-school/yum7l9l1tvhjl8yshm46wcvl5z1xvwpape.png)
=
![(1)/(2)(-108)](https://img.qammunity.org/2021/formulas/mathematics/high-school/undz6as6mhsksh8wnw58u2sn1sugvwauqw.png)
= (-54) unit²
Therefore, absolute value of the area = 54 square units
(b). Distance between two vertices (a, b) and (c, d)
d =
![\sqrt{(a-c)^(2)+(b-d)^2}](https://img.qammunity.org/2021/formulas/mathematics/high-school/8in8az6re23j3gdllj1tpmqyjsg88ca6ur.png)
AB =
![\sqrt{(-4-1)^(2)+(-2-7)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ipjnkn9ujl1z21b9dqef31zskkdki626tz.png)
=
![√(106)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/82yptf0if6z8ba1pyujvqq2hamio0prq97.png)
= 10.295 units
BC =
![√((1-8)^2+(7+2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u72uwangq3y7ufbxckxsg7z40e076mutp9.png)
=
![√(130)](https://img.qammunity.org/2021/formulas/physics/college/5n0dek87em4isx5ionw7ezrrsalslvv3l6.png)
= 11.402 units
AC =
![√((-4-8)^2+(-2+2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/va5bqyfx1s4t4r5j1c9qibbvymu9zeq6vy.png)
= 12 units
Perimeter of the triangle = AB + BC + AC = 10.295 + 11.402 + 12
= 33.697
≈ 33.7 units