Answer:
![\bold{9)\ \sin \theta=(1)/(3)\qquad 10)\ \sin \theta = (4)/(5)\qquad 11)\ \cos \theta = (√(11))/(6)\qquad 12)\ \tan \theta = (17\sqrt2)/(26)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/upb457886zdvoco2tsrwflt13zuql92lbs.png)
Explanation:
Pythagorean Theorem is: a² + b² = c² , where "c" is the hypotenuse
![9)\ \sin \theta=\frac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=(4)/(12)\quad \rightarrow \large\boxed{(1)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/bc6zw4948ijj6z9nwh8iu74fuhw5cg1v3g.png)
Note: 4² + (8√2)² = hypotenuse² → hypotenuse = 12
![10)\ \sin \theta=\frac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=(16)/(20)\quad \rightarrow \large\boxed{(4)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/17uyxfgvfwym9w4gc42xl733w5agekboq4.png)
Note: 12² + opposite² = 20² → opposite = 16
![11)\ \cos \theta=\frac{\text{side adjacent to}\ \theta}{\text{hypotenuse of triangle}}=(√(11))/(6)\quad =\large\boxed{(√(11))/(6)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/pk6ubbxzx0kka7g2l2k9mrlwyn1uuz3aw0.png)
Note: adjacent² + 5² = 6² → adjacent = √11
![12)\ \tan \theta=\frac{\text{side opposite of}\ \theta}{\text{side adjacent to}\ \theta}=(17)/(13\sqrt2)\quad =\large\boxed{(17\sqrt2)/(26)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/e4ef433c13gs36lthl83frr9g3a5pciwot.png)
Note: adjacent² + 7² = (13√2)² → adjacent = 17