30.9k views
2 votes
part 3. Find the value of the trig function indicated, use Pythagorean theorem to find the third side if you need it.​

part 3. Find the value of the trig function indicated, use Pythagorean theorem to-example-1

1 Answer

1 vote

Answer:
\bold{9)\ \sin \theta=(1)/(3)\qquad 10)\ \sin \theta = (4)/(5)\qquad 11)\ \cos \theta = (√(11))/(6)\qquad 12)\ \tan \theta = (17\sqrt2)/(26)}

Explanation:

Pythagorean Theorem is: a² + b² = c² , where "c" is the hypotenuse


9)\ \sin \theta=\frac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=(4)/(12)\quad \rightarrow \large\boxed{(1)/(3)}

Note: 4² + (8√2)² = hypotenuse² → hypotenuse = 12


10)\ \sin \theta=\frac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=(16)/(20)\quad \rightarrow \large\boxed{(4)/(5)}

Note: 12² + opposite² = 20² → opposite = 16


11)\ \cos \theta=\frac{\text{side adjacent to}\ \theta}{\text{hypotenuse of triangle}}=(√(11))/(6)\quad =\large\boxed{(√(11))/(6)}

Note: adjacent² + 5² = 6² → adjacent = √11


12)\ \tan \theta=\frac{\text{side opposite of}\ \theta}{\text{side adjacent to}\ \theta}=(17)/(13\sqrt2)\quad =\large\boxed{(17\sqrt2)/(26)}

Note: adjacent² + 7² = (13√2)² → adjacent = 17

User Diyaa
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories