88.4k views
2 votes
part 1. Find the value of the trig function indicated, use the Pythagorean Theorem to find the 3rd side if you need it​

part 1. Find the value of the trig function indicated, use the Pythagorean Theorem-example-1
User Chrono
by
5.3k points

1 Answer

1 vote

Answer:
\bold {1)\ \cos\ \theta}=(\sqrt2)/(2)\qquad 2)\ \tan \theta =(1)/(3)\qquad 3)\ \cos\ \theta=(3√(13))/(13)\qquad 4)\ \cos\ \theta = (2\sqrt5)/(5)}

Explanation:

Pythagorean Theorem is: a² + b² = c², where "c" is the hypotenuse


1)\ \cos \theta=\frac{\text{side adjacent to}\ \theta}{\text{hypotenuse of triangle}}=(2)/(2\sqrt2)\quad =\large\boxed{(\sqrt2)/(2)}

Note: 2² + 2² = hypotenuse² → hypotenuse = 2√2


2)\ \tan \theta=\frac{\text{side opposite to}\ \theta}{\text{side adjacent to}\ \theta}=(2)/(2\sqrt2)\quad =(5)/(15)\quad \rightarrow \large\boxed{(1)/(3)}

Note: hypotenuse not needed for tan θ


3)\ \cos \theta=\frac{\text{side adjacent to}\ \theta}{\text{hypotenuse of triangle}}=(3)/(√(13))\quad =\large\boxed{(3√(13))/(13)}

Note: 2² + 3² = hypotenuse² → hypotenuse = √13


4)\ \cos \theta=\frac{\text{side adjacent to}\ \theta}{\text{hypotenuse of triangle}}=(4)/(2\sqrt5)\quad =\large\boxed{(2\sqrt5)/(5)}

Note: hypotenuse given in problem

User Fab
by
6.3k points