Step-by-step explanation:
Draw a free body diagram of the pendulum (the combination of the sphere and the massless rod). There are three forces on the pendulum:
Weight force mg at the center of the sphere,
Reaction force in the x direction at the pivot,
Reaction force in the y direction at the pivot.
Sum the torques about the pivot O.
∑τ = I d²θ/dt²
mg (L sin θ) = I d²θ/dt²
For small θ, sin θ ≈ θ.
mg L θ = I d²θ/dt²
Since d²θ/dt² is directly proportional to θ, this fits the definition of simple harmonic motion.
If you wish, you can use parallel axis theorem to find the moment of inertia about O:
I = Icm + md²
I = ⅖ mr² + mL²
mg L θ = (⅖ mr² + mL²) d²θ/dt²
gL θ = (⅖ r² + L²) d²θ/dt²