85.2k views
1 vote
Which is the completely factored form of 4X cubed +10 X squared minus 6X

2 Answers

7 votes

Answer:


=2x\left(2x-1\right)\left(x+3\right)

Explanation:


4x^3+10x^2-6x\\\mathrm{Factor\:out\:common\:term\:}2x:\quad 2x\left(2x^2+5x-3\right)\\\mathrm{Apply\:exponent\:rule}:\quad \:a^(b+c)=a^ba^c\\x^2=xx\\x^3=x^2x\\=4x^2x+10xx-6x\\\mathrm{Rewrite\:}6\mathrm{\:as\:}2\cdot \:3\\\mathrm{Rewrite\:}10\mathrm{\:as\:}2\cdot \:5\\\mathrm{Rewrite\:}4\mathrm{\:as\:}2\cdot \:2\\=2\cdot \:2x^2x+2\cdot \:5xx-2\cdot \:3x\\\mathrm{Factor\:out\:common\:term\:}2x\\=2x\left(2x^2+5x-3\right)\\\mathrm{Factor}\:2x^2+5x-3:\quad \left(2x-1\right)\left(x+3\right)


2x^2+5x-3\\\mathrm{Break\:the\:expression\:into\:groups}\\=\left(2x^2-x\right)+\left(6x-3\right)\\\mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2-x\mathrm{:\quad }x\left(2x-1\right)\\2x^2-x\\\mathrm{Apply\:exponent\:rule}:\quad \:a^(b+c)=a^ba^c\\x^2=xx\\=2xx-x\\\mathrm{Factor\:out\:common\:term\:}x\\=x\left(2x-1\right)\\\mathrm{Factor\:out\:}3\mathrm{\:from\:}6x-3\mathrm{:\quad }3\left(2x-1\right)\\6x-3\\\mathrm{Rewrite\:}6\mathrm{\:as\:}3\cdot \:2\\=3\cdot \:2x-3


\mathrm{Factor\:out\:common\:term\:}3\\=3\left(2x-1\right)\\=x\left(2x-1\right)+3\left(2x-1\right)\\\mathrm{Factor\:out\:common\:term\:}2x-1\\=\left(2x-1\right)\left(x+3\right)\\=2x\left(2x-1\right)\left(x+3\right)

User Bsn
by
8.1k points
5 votes

Answer:

2x(2x - 1)(x + 3)

Explanation:

4x^3 + 10x^2 - 6x =

Factor out the common factor 2x.

= 2x(2x^2 + 5x - 3)

Factor the trinominal.

= 2x(2x - 1)(x + 3)

User Maxim Efimov
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories