50.4k views
5 votes
2x + 3y = 12
Complete the missing value in the solution to the equation.
1,8)

User Meloncholy
by
3.9k points

1 Answer

6 votes

Answer:

Explanation:


\mathrm{Slope-Intercept\:form\:of}\:2x+3y=12:\quad y=-(2)/(3)x+4\\\mathrm{Domain\:of\:}\:-(2)/(3)x+4\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}\\\mathrm{Range\:of\:}-(2)/(3)x+4:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}


\mathrm{Parity\:of}\:-(2)/(3)x+4:\quad \mathrm{Neither\:even\:nor\:odd}\\\mathrm{Axis\:interception\:points\:of}\:-(2)/(3)x+4:\quad \mathrm{X\:Intercepts}:\:\left(6,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:4\right)\\\mathrm{Inverse\:of}\:-(2)/(3)x+4:\quad -(3x-12)/(2)\\\mathrm{Slope\:of\:}-(2)/(3)x+4:\quad m=-(2)/(3)

User Utkrist Adhikari
by
4.8k points