Answer:
Domain : x ∈ Real Numbers
Range : y ≥ 30
Explanation:
The given equation is:
![y^2-9x^2=900](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z15t5b00t7lbgnc4kcm4ryys65h0jv3md3.png)
Simplifying it
![(y^2)/(900)-(9x^2)/(900)=(900)/(900)\\(y^2)/(900)-(x^2)/(100)=1\\(y^2)/(30^2)-(x^2)/(10^2)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/of7rt1f6g6cqjxrrl3o5in7ajhvqdd8axq.png)
Where Standard equation of parabola is:
![(y^2)/(a^2)-(x^2)/(b^2)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ahl0dmtlpd75qi78sq92fvq79b88y15dqi.png)
Which are similar. Conic Section is a parabola.
Find Domain and Range:
Simplify the given equation:
![y^2-9x^2=900\\y=√(9x^2+900),y=-√(9x^2+900)\\y=3√(x^2+100),y=-3√(x^2+100)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yzomx2i18kbas196jkcqi4a0yvd27cy44b.png)
For whatever value of x, term under the square root always remains positive, so
Domain : x ∈ Real Numbers
For minimum value of x i.e 0, y=30. If we increase x, y also increases. So
Range : y ≥ 30