Answer:
We have axis of symmetry in
![x=-1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r09d2j03o35wlqb201n202kkqkmlb1vt4x.png)
The vertex point is
![(-1, -9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/13c5d9mgvowcil5jg0w3luavwmwq5miqlj.png)
The roots by factoring are
![x=-4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/olv9md1kh1ye01ox6ftalm8pp6cu2u67az.png)
![x=2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l44oth01qqbnuop6qxtvmqlzuv7kvr7xrb.png)
Explanation:
We have the function:
![f(x)=x^2+2x-8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/26k01zr0yfo5739nftvfk99e7y20tkurxz.png)
Factoring the quadratic equation:
![y=(x+4)(x-2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/70rt71vkhb2ggicds208scsacjk01m9z35.png)
When
![y=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/3bpgiogwa16ug3yokuqlgznnvo86fqgw4l.png)
![0=(x+4)(x-2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tf1szhlvam9k3ptiiz6atd023navq1mfvu.png)
![x=-4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/olv9md1kh1ye01ox6ftalm8pp6cu2u67az.png)
![x=2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l44oth01qqbnuop6qxtvmqlzuv7kvr7xrb.png)
The vertex point is
![(h, k)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cl9ziwily1mze0h7urb026cjc1vdkg1fl7.png)
From the equation, we have
![a=1,\:b=2 \text{ and }\:c=-8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d8u10neawbnd1nncgwois98h5v5ps4y8v8.png)
![$h=-(b)/(2a)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z12mwp89zvx7bzgtgt6q93anz0m0a5kkw4.png)
![$h=-(2)/(2\cdot \:1)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/blp4bxgtntyre627yb8f28vfldn05825x4.png)
![h=-1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o2b4ne3enm3ae3l1vtahovtduxylhq62zv.png)
We also got the axis of symmetry
In order to find
just use the
:
![k=(-1)^2+2(-1)-8\\k=1-2-8\\k=-9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qv1u7oc2aapqc264j8s9taucgxmuu4iwy3.png)
Once
, we have the minimum at
![(-1, -9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/13c5d9mgvowcil5jg0w3luavwmwq5miqlj.png)