60.1k views
1 vote
Evaluate the following Integrals ∫sin

1 Answer

5 votes

Answer:


\displaystyle \int {xsinx} \, dx = -xcosx + sinx + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {xsinx} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = x
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = dx
  3. [dv] Trigonometric Integration:
    \displaystyle v = -cosx
  4. Set dv:
    \displaystyle dv = sinx \ dx

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int {xsinx} \, dx = -xcosx - \int {-cosx} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {xsinx} \, dx = -xcosx + \int {cosx} \, dx
  3. [Integral] Trigonometric Integration:
    \displaystyle \int {xsinx} \, dx = -xcosx + sinx + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Mugsy
by
3.9k points