72.8k views
2 votes
Please solve the question.

Please solve the question.-example-1
User Juude
by
8.8k points

1 Answer

3 votes

Answer:

a = 125°, b = 20°, c = 35°, d = 90°, e = 55°

Explanation:

Quadrilateral PQRS is inscribed in a circle, therefore it is a cyclic quadrilateral.

PQ is diameter, SR is chord and PR is transversal such that:

PQ || SR... (given)


m\angle PRQ = 90°..(\angle \: inscribed \: in\: semicircle) \\</p><p>\huge \red {\boxed {\therefore d = 90°}} \\\\</p><p>m\angle RPQ= m\angle PRS .. (alternate \: \angle s) \\</p><p>\huge \purple {\boxed {\therefore c = 35°}} \\\\</p><p>In\: \triangle PQR, \\</p><p>c + d + e = 180°\\</p><p>35° + 90° + e = 180°\\</p><p>125° + e = 180°\\</p><p>e = 180° - 125°\\</p><p>\huge \orange {\boxed {\therefore e = 55°}} \\\\</p><p>a + e = 180°...(opposite \:\angle 's \: of \: cyclic \: quadrilateral) \\</p><p>a + 55°= 180°\\</p><p>a = 180°- 55°\\</p><p>\huge \blue {\boxed {a = 125°}} \\\\</p><p>In\: \triangle PSR, \\</p><p>a + b + 35°= 180°\\</p><p>125° + b + 35° = 180°\\</p><p>160° + b = 180°\\</p><p>b = 180° - 160°\\</p><p>\huge \pink {\boxed {b = 20°}} </p><p>

User Steve De Niese
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories