Answer:
![E(X) = 7*0.18 +9*0.08 +11*0.09 +15*0.08 +17*0.41 =13.22](https://img.qammunity.org/2021/formulas/mathematics/college/vvjgzxi7sfkyawzll4t2bwgt3jqnltg2qm.png)
And we can find the second moment with this formula:
![E(X^2) = \sum_(i=1)^n X^2_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/college/f31ut1wjdwu13sp4ctbxgkcfpi4gqzc77s.png)
And replacing we got:
![E(X^2) = 7^2*0.18 +9^2*0.08 +11^2*0.09 +15^2*0.08 +17^2*0.41 =189.72](https://img.qammunity.org/2021/formulas/mathematics/college/scbwjqadw8c9voxx3ykkeipt7siur6pcyq.png)
And we can find the variance like this:
![Var(X) = E(X^2) -[E(X)]^2= 189.72- (13.22)^2 =14.9516](https://img.qammunity.org/2021/formulas/mathematics/college/ku19kfajcjtcl2l8y6p4ownw5oxnzwqi1a.png)
And the deviation would be:
![Sd(X)= √(14.9516)= 3.867](https://img.qammunity.org/2021/formulas/mathematics/college/cri23yyoulgyjpynyucsq4yqui16b92vhd.png)
Explanation:
For this case we have the following dataset given:
Payment $7 $9 $11 $13 $15 $17
Probability 0.18 0.08 0.09 0.16 0.08 0.41
For this case we can calculate the mean with this formula:
![E(X) = \sum_(i=1)^n X_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/high-school/seoe5h9r9il05zdhoyt8ljlel10l46kdc0.png)
And replacing we got:
![E(X) = 7*0.18 +9*0.08 +11*0.09 +15*0.08 +17*0.41 =13.22](https://img.qammunity.org/2021/formulas/mathematics/college/vvjgzxi7sfkyawzll4t2bwgt3jqnltg2qm.png)
And we can find the second moment with this formula:
![E(X^2) = \sum_(i=1)^n X^2_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/college/f31ut1wjdwu13sp4ctbxgkcfpi4gqzc77s.png)
And replacing we got:
![E(X^2) = 7^2*0.18 +9^2*0.08 +11^2*0.09 +15^2*0.08 +17^2*0.41 =189.72](https://img.qammunity.org/2021/formulas/mathematics/college/scbwjqadw8c9voxx3ykkeipt7siur6pcyq.png)
And we can find the variance like this:
![Var(X) = E(X^2) -[E(X)]^2= 189.72- (13.22)^2 =14.9516](https://img.qammunity.org/2021/formulas/mathematics/college/ku19kfajcjtcl2l8y6p4ownw5oxnzwqi1a.png)
And the deviation would be:
![Sd(X)= √(14.9516)= 3.867](https://img.qammunity.org/2021/formulas/mathematics/college/cri23yyoulgyjpynyucsq4yqui16b92vhd.png)