Answer:
60.85% probability that the sample mean is between $1.4 million and $1.5 million per year
Explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question, we have that:
In millions of dollars.
What is the probability that the sample mean is between $1.4 million and $1.5 million per year?
This is the pvalue of Z when X = 1.5 subtracted by the pvalue of Z when X = 1.4. So
X = 1.5
has a pvalue of 0.7088
X = 1.4
has a pvalue of 0.1003
0.7088 - 0.1003 = 0.6085
60.85% probability that the sample mean is between $1.4 million and $1.5 million per year