170k views
2 votes
Find the product or type
"impossible".
3 -5 4 2


Find the product or type "impossible". 3 -5 4 2 ​-example-1
User Nakeah
by
4.5k points

1 Answer

5 votes

Answer:

The product of
\begin{pmatrix}3&-5\\ \:1&7\end{pmatrix}\begin{pmatrix}4&2\\ \:-4&2\end{pmatrix} is
\begin{pmatrix}32&-4\\ -24&16\end{pmatrix}.

Explanation:

A matrix is a rectangular arrangement of numbers into rows and columns.

Matrix multiplication refers to the product of two matrices.

The main condition of matrix multiplication is that the number of columns of the 1st matrix must equal to the number of rows of the 2nd one.

To find the product of
\begin{pmatrix}3&-5\\ \:1&7\end{pmatrix}\begin{pmatrix}4&2\\ \:-4&2\end{pmatrix}


\mathrm{Multiply\:the\:rows\:of\:the\:first\:matrix\:by\:the\:columns\:of\:the\:second\:matrix}\\\\\begin{pmatrix}3&-5\end{pmatrix}\begin{pmatrix}4\\ -4\end{pmatrix}=3\cdot \:4+\left(-5\right)\left(-4\right)\\\\\begin{pmatrix}3&-5\end{pmatrix}\begin{pmatrix}2\\ 2\end{pmatrix}=3\cdot \:2+\left(-5\right)\cdot \:2\\\\\begin{pmatrix}1&7\end{pmatrix}\begin{pmatrix}4\\ -4\end{pmatrix}=1\cdot \:4+7\left(-4\right)\\\\\begin{pmatrix}1&7\end{pmatrix}\begin{pmatrix}2\\ 2\end{pmatrix}=1\cdot \:2+7\cdot \:2


\begin{pmatrix}3&-5\\ 1&7\end{pmatrix}\begin{pmatrix}4&2\\ -4&2\end{pmatrix}=\begin{pmatrix}3\cdot \:4+\left(-5\right)\left(-4\right)&3\cdot \:2+\left(-5\right)\cdot \:2\\ 1\cdot \:4+7\left(-4\right)&1\cdot \:2+7\cdot \:2\end{pmatrix}


\mathrm{Simplify\:each\:element}\\\\\begin{pmatrix}3&-5\\ 1&7\end{pmatrix}\begin{pmatrix}4&2\\ -4&2\end{pmatrix}=\begin{pmatrix}32&-4\\ -24&16\end{pmatrix}

User Elie
by
4.4k points