Answer: a = 16
==========================================================
Step-by-step explanation:
Let's expand out that given expression.
First I'll let w = y-4x to make distribution a bit easier
![(y-4x)(y^2+4y+16)\\\\w(y^2+4y+16)\\\\wy^2+4wy+16w\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/57ouf1forfp2wfo5xmun9hmngxijxz7jvk.png)
Now plug w = y-4x back in and distribute three more times
![wy^2+4wy+16w\\\\y^2(w)+4y(w)+16(w)\\\\y^2(y-4x)+4y(y-4x)+16(y-4x)\\\\y^3-4xy^2+4y^2-\boldsymbol{16}xy+16y-64x\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/5l46rcql4ctezmjfm7y0cobe3dwr8xkvsw.png)
Notice that the only
term here is the
![-16xy](https://img.qammunity.org/2023/formulas/mathematics/high-school/fj99w7lvlzrl8vf2nh357rna6rpa4h8qqh.png)
Comparing this to the form
shows that
![\boldsymbol{a = 16}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2j30ushic0klazvhgh11tadec20zmjvdqm.png)