Answer:
![sin 240^\circ = - (√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ix4y2007y84sjmtxeq6215ff4toqtagdhz.png)
Explanation:
We are given that:
![sin 60^\circ = (√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mi5ebwp764ek4j279jg5d0ijj0xgx5gj5z.png)
We need to find
![sin 240^\circ = ?](https://img.qammunity.org/2021/formulas/mathematics/middle-school/muoraqjdzwgx8nimn97gyu7l2crcs8y9zw.png)
240 is greater than 180 and lesser than 270
OR
![180^\circ<240^\circ<270^\circ](https://img.qammunity.org/2021/formulas/mathematics/middle-school/afbsz9gf57moyyd20w79oxcqd43x7ar1jh.png)
So, Angle
lies in the 3rd quadrant and it is well known that value of sine in 3rd quadrant is negative.
Using the property :
or
![sin(180^\circ + \theta) = -sin\theta](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tgwdlzga9tui9v2vxykxrj3hmk69hb4z1z.png)
Here,
.
![sin 240^\circ =sin(180^\circ + 60^\circ) = -sin60^\circ\\\Rightarrow -(√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gs20p3rkzkyz8mmfvnyj3669ji2x9eo6j9.png)
Hence, the value
![sin 240^\circ = - (√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ix4y2007y84sjmtxeq6215ff4toqtagdhz.png)