Answer:
The uniform pressure for the necessary axial force is W = 945 N
The uniform wear for the necessary axial force is W = 970.15 N
Step-by-step explanation:
Solution
Given that:
r₁ = 0.1 m
r₂ = 0.05m
μ = 0.35
p = 12 N or kW
N = 1500 rpm
W = 1000 N
The angular velocity is denoted as ω= 2πN/60
Here,
ω = 2π *1500/60 = 157.07 rad/s
Now, the power transferred becomes
P = Tω this is the equation (1)
Thus
12kW = T * 157.07 rad/s
T = 76.4 N.m
Now, when we look at the uniform condition, we have what is called the torque that is frictional which acts at the frictional surface of the clutch dented as :
T = nμW R this is the equation (2)
The frictional surface of the mean radius is denoted by
R =2/3 [(r₁)³ - (r₂)³/(r₁)² - (r₂)²]
=[(0.1)³ - (0.05)³/[(0.1)² - (0.05)²]
R is =0.077 m
Now, we replace this values and put them into the equation (2)
It gives us this, 76. 4 N.m = n * 0.35* 1000 N * 0.077 m
n = 2.809 = 3
The number of pair surfaces is = 3
Secondly, we determine the uniform wear.
So, the mean radius is denoted as follows:
R = r₁ + r₂/ 2
=0.1 + 0.05/2
=0.075 m
Now, we replace the values and put it into the equation (2) formula
76. 4 N.m = n *0.35* 1000 N * 0.075 m
n= 2.91 = 3
Again, the number of pair surfaces = 3
However, for the uniform pressure with regards to the number of clutch plates is 3 we can derive the necessary axial force from the equation (2)
76. 4 N.m = 3 * 0.35 * W *0.077 m
W = 945 N
Also, for the uniform wear with regards to the number of clutch plates is 3 we can derive the necessary axial force from the equation (2)
76. 4 N.m = 3 * 0.35 * W *0.075 m
W = 970. 15 N