58.9k views
0 votes
What are the solutions for cos2 x - cos2x = 0​

User DCuser
by
5.7k points

1 Answer

2 votes

Answer:


x=0,\pi,2\pi

Step-by-step explanation:


cos^(2)(x)-cos(2x)=0

Firstly, we will simplify the double angle formulae


cos(2x)=cos(x+x)\\cos(x+x)=cos(x)cos(x)-sin(x)sin(x)\\cos(x+x)=cos^(2)(x)-sin^(2)(x)

Now, we can substitute our value for cos(2x) into our original equation.


cos^(2)(x)-(cos^(2)(x)-sin^(2)(x))=0\\cos^2(x)-cos^2(x)+sin^2(x)=0\\sin^2(x)=0\\sin(x)=0\\x=arcsin(0)\\x=0,\pi,2\pi

(Solutions in the range
0 \leq x \leq 2\pi)

User Dr Casper Black
by
5.6k points