Answer:
6n - 37
Explanation:
The derivative of the function f(x) gives the gradient (slope) of the tangent to the graph of y = f(x) at the point (x, y).
Given:
![y=3x^2-37x+6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kp12o7jkt08dpldkh2e32aum3ee1pbm7q8.png)
Therefore, the gradient (slope) of the given curve at x is:
![\implies (dy)/(dx)=2 \cdot 3x^(2-1)-37x^(1-1)+0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/98wib7caf7nqsewdjlj25r0r0qt8jq39qf.png)
![\implies (dy)/(dx)=6x-37](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ts6v8x1jt1e7ee8zvvdw7lbhdyz14yaknz.png)
To find the slope, simply substitute x for n:
![\implies 6n-37](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v4dnbgym7wtsiat14gxlx5jw0ri1r800zs.png)