Answer:
P(A∪B) = 1/3
Explanation:
Red Garments = 1 red shirt + 1 red hat + 1 red pairs of pants
Total Red Garments = 3
Green Garments = 1 green shirt + 1 green scarf + 1 green pairs of pants
Total Green Garments = 3
The total number of garments = Total Red Garments + Total Green Garments:
3 + 3 = 6
Let A be the event that he selects a green garment
P(A) = Number of required outcomes/Total number of possible outcomes
P(A) = 3/6
Let B be the event that he chooses a scarf
P(B) = 1/6
The objective here is to determine P(A or B) = P(A∪B)
Using the probability set notation theory:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∩B) = Probability that a green pair of pant is chosen = P(A) - P(B)
= 3/6-1/6
= 2/6
P(A∪B) = 1/2 + 1/6 - 2/6
P(A∪B) = 2/6
P(A∪B) = 1/3