Answer:
![\sf (7)/(17)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mytzx0n2tnav8svre8jv6mxb8zhatc9y9w.png)
Explanation:
Given information:
- 6 red crayons
- 7 blue crayons
- 4 green crayons
⇒ total number of crayons = 6 + 7 + 4 = 17
![\sf Probability\:of\:an\:event\:occurring = (Number\:of\:ways\:it\:can\:occur)/(Total\:number\:of\:possible\:outcomes)](https://img.qammunity.org/2023/formulas/mathematics/college/7eloctizz4bck4h5oqa5m8rmxi31of3oo0.png)
![\implies \sf P(red\:crayon) =\frac{\textsf{Number of red crayons}}{\textsf{Total number of crayons}}=(6)/(17)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6fexkxjbc24ibhsr3xhmdccfksaw0ihrxg.png)
If the red crayon is put back in the bag, the drawing of the red crayon prior to drawing the blue crayon will not affect the probability of drawing a blue crayon.
![\implies \sf P(blue\:crayon)=\frac{\textsf{Number of blue crayons}}{\textsf{Total number of crayons}}=(7)/(17)](https://img.qammunity.org/2023/formulas/mathematics/high-school/c4598qcall7gm0g36xhuugzqte8bx2wart.png)