Answer:
![(4bc^(6) - (1)/(2))(4bc^(6) + (1)/(2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rb09knpkol4uj0tzot984ii6hwshf4lsj0.png)
Explanation:
Given
![16b^2c^(12) - 0.25](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3l2qx7ocusgjearcop3kcg1yq8m76m48ph.png)
Required
Factor Completely
Follow the steps below;
Rewrite 0.25 as a fraction
![16b^2c^(12) - (25)/(100)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eq729af3jb5ssj02v0jj4da4m6r6pei26g.png)
Simplify fraction to lowest term
![16b^2c^(12) - (1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1nplks7m7unbh62vakkp6uncy0hynhg6qe.png)
Expand
![16b^2c^(12)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wpaovjtc9dp3u5anqsaq43b7ho698l2k5b.png)
![4^2b^2c^(6*2) - (1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/23d8ged732abvqcp1pkphjt6sty3ac3el2.png)
![(4bc^(6))^2 - (1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mphlsxlg4bypktzctm7dfrax1egrw8w8t7.png)
Expand
![(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r8zl28n0vf0ogg71i3r53apxva24c1inf4.png)
![(4bc^(6))^2 - (1)/(2)*(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c49nvb39ycu8zuij0jl7pg6889uzilovtr.png)
![(4bc^(6))^2 -( (1)/(2))^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hwsksyrsosizzu00vegdfu0084cvbc8y6e.png)
From laws of product of two squares
![a^2 - b^2 = (a+b)(a-b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2soz8m09dgcs4h1kreorknsro84ace2r85.png)
So,
is equivalent to
![(4bc^(6) - (1)/(2))(4bc^(6) + (1)/(2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rb09knpkol4uj0tzot984ii6hwshf4lsj0.png)
The expression cannot be factorized any further;
Hence, the factor of
is
![(4bc^(6) - (1)/(2))(4bc^(6) + (1)/(2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rb09knpkol4uj0tzot984ii6hwshf4lsj0.png)