150k views
19 votes
Select the correct answer. Which system of equations has a solution of (-2,-2,-2) ​

Select the correct answer. Which system of equations has a solution of (-2,-2,-2) ​-example-1

1 Answer

5 votes

Answer:

[B]
\begin{bmatrix}x+2y=-6\\ y+2z=-6\\ x-y-z=2\end{bmatrix}

Explanation:

Going through all answer choice to find the solution:

[A]
\begin{bmatrix}x+y=0\\ y-z=-2\\ x+y-z=-4\end{bmatrix}


\mathrm{Isolate\;x\;for\;x+y=0;x=-y}


\mathrm{Substitute\:}x=-y


\begin{bmatrix}y-z=-2\\ -y+y-z=-4\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}y-z=-2\\ -z=-4\end{bmatrix}


\mathrm{Isolate\;z\;for\;-z=-4;z=4}


\mathrm{Substitute\:}z=4


\begin{bmatrix}y-4=-2\end{bmatrix}


\mathrm{Isolate\;y\;for\;y-4=-2;y=2}


\mathrm{For\:}x=-y


\mathrm{Substitute\:}z=4,\:y=2


x=-2


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=-2,\:z=4,\:y=2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[B]
\begin{bmatrix}x+2y=-6\\ y+2z=-6\\ x-y-z=2\end{bmatrix}


\begin{bmatrix}y+2z=-6\\ z-y-z=2\end{bmatrix}


\mathrm{Substitute\:}y=-2


\begin{bmatrix}-2+2z=-6\end{bmatrix}


\mathrm{For\:}x=-6-2y


\mathrm{Substitute\:}z=-2,\:y=-2


x=-6-2\left(-2\right)


x=-2


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=-2,\:z=-2,\:y=-2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[C]
\begin{bmatrix}3x-y=-8\\ y-3z=-8\\ x+y+z=-8\end{bmatrix}


\mathrm{Substitute\:}x=(-8+y)/(3)


\begin{bmatrix}y-3z=-8\\ (-8+y)/(3)+y+z=-8\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}y-3z=-8\\ z+(-8+4y)/(3)=-8\end{bmatrix}


\mathrm{Substitute\:}y=-8+3z


\begin{bmatrix}z+(-8+4\left(-8+3z\right))/(3)=-8\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}(15z-40)/(3)=-8\end{bmatrix}


\mathrm{For\:}y=-8+3z


\mathrm{Substitute\:}z=(16)/(15)


y=-8+3\cdot (16)/(15)


y=-(24)/(5)


\mathrm{For\:}x=(-8+y)/(3)


\mathrm{Substitute\:}z=(16)/(15),\:y=-(24)/(5)


x=(-8-(24)/(5))/(3)=x=-(64)/(15)


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=-(64)/(15),\:z=(16)/(15),\:y=-(24)/(5)


x=-(64)/(15)=-4.26666666667, z=(16)/(15)=1.06666666667,y=-(24)/(5)=-4.8

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[D]
\begin{bmatrix}x-2y+z=0\\ 2y+9z=-20\\ x-y+z=0\end{bmatrix}


\mathrm{Substitute\:}y=(-20-9z)/(2)


\begin{bmatrix}x-2\cdot (-20-9z)/(2)+z=0\\ x-(-20-9z)/(2)+z=0\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}x+20+10z=0\\ x+(20+11z)/(2)=0\end{bmatrix}


\mathrm{Substitute\:}x=-10z-20


\begin{bmatrix}-10z-20+(20+11z)/(2)=0\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}(20-9z)/(2)-20=0\end{bmatrix}


\mathrm{For\:}x=-10z-20


\mathrm{Substitute\:}z=-(20)/(9)


x=-10\left(-(20)/(9)\right)-20


x=(20)/(9)


\mathrm{For\:}y=(-20-9z)/(2)


\mathrm{Substitute\:}x=(20)/(9),\:z=-(20)/(9)


y=(-20-9\left(-(20)/(9)\right))/(2)=0


y=0


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=(20)/(9),\:z=-(20)/(9),\:y=0


x=(20)/(9)=2.22222222222,\:z=-(20)/(9)-2.22222222222,\:y=0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Kavinsky

User Phil Gref
by
7.7k points