150k views
19 votes
Select the correct answer. Which system of equations has a solution of (-2,-2,-2) ​

Select the correct answer. Which system of equations has a solution of (-2,-2,-2) ​-example-1

1 Answer

5 votes

Answer:

[B]
\begin{bmatrix}x+2y=-6\\ y+2z=-6\\ x-y-z=2\end{bmatrix}

Explanation:

Going through all answer choice to find the solution:

[A]
\begin{bmatrix}x+y=0\\ y-z=-2\\ x+y-z=-4\end{bmatrix}


\mathrm{Isolate\;x\;for\;x+y=0;x=-y}


\mathrm{Substitute\:}x=-y


\begin{bmatrix}y-z=-2\\ -y+y-z=-4\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}y-z=-2\\ -z=-4\end{bmatrix}


\mathrm{Isolate\;z\;for\;-z=-4;z=4}


\mathrm{Substitute\:}z=4


\begin{bmatrix}y-4=-2\end{bmatrix}


\mathrm{Isolate\;y\;for\;y-4=-2;y=2}


\mathrm{For\:}x=-y


\mathrm{Substitute\:}z=4,\:y=2


x=-2


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=-2,\:z=4,\:y=2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[B]
\begin{bmatrix}x+2y=-6\\ y+2z=-6\\ x-y-z=2\end{bmatrix}


\begin{bmatrix}y+2z=-6\\ z-y-z=2\end{bmatrix}


\mathrm{Substitute\:}y=-2


\begin{bmatrix}-2+2z=-6\end{bmatrix}


\mathrm{For\:}x=-6-2y


\mathrm{Substitute\:}z=-2,\:y=-2


x=-6-2\left(-2\right)


x=-2


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=-2,\:z=-2,\:y=-2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[C]
\begin{bmatrix}3x-y=-8\\ y-3z=-8\\ x+y+z=-8\end{bmatrix}


\mathrm{Substitute\:}x=(-8+y)/(3)


\begin{bmatrix}y-3z=-8\\ (-8+y)/(3)+y+z=-8\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}y-3z=-8\\ z+(-8+4y)/(3)=-8\end{bmatrix}


\mathrm{Substitute\:}y=-8+3z


\begin{bmatrix}z+(-8+4\left(-8+3z\right))/(3)=-8\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}(15z-40)/(3)=-8\end{bmatrix}


\mathrm{For\:}y=-8+3z


\mathrm{Substitute\:}z=(16)/(15)


y=-8+3\cdot (16)/(15)


y=-(24)/(5)


\mathrm{For\:}x=(-8+y)/(3)


\mathrm{Substitute\:}z=(16)/(15),\:y=-(24)/(5)


x=(-8-(24)/(5))/(3)=x=-(64)/(15)


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=-(64)/(15),\:z=(16)/(15),\:y=-(24)/(5)


x=-(64)/(15)=-4.26666666667, z=(16)/(15)=1.06666666667,y=-(24)/(5)=-4.8

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[D]
\begin{bmatrix}x-2y+z=0\\ 2y+9z=-20\\ x-y+z=0\end{bmatrix}


\mathrm{Substitute\:}y=(-20-9z)/(2)


\begin{bmatrix}x-2\cdot (-20-9z)/(2)+z=0\\ x-(-20-9z)/(2)+z=0\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}x+20+10z=0\\ x+(20+11z)/(2)=0\end{bmatrix}


\mathrm{Substitute\:}x=-10z-20


\begin{bmatrix}-10z-20+(20+11z)/(2)=0\end{bmatrix}


\mathrm{Simplify}


\begin{bmatrix}(20-9z)/(2)-20=0\end{bmatrix}


\mathrm{For\:}x=-10z-20


\mathrm{Substitute\:}z=-(20)/(9)


x=-10\left(-(20)/(9)\right)-20


x=(20)/(9)


\mathrm{For\:}y=(-20-9z)/(2)


\mathrm{Substitute\:}x=(20)/(9),\:z=-(20)/(9)


y=(-20-9\left(-(20)/(9)\right))/(2)=0


y=0


\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}


x=(20)/(9),\:z=-(20)/(9),\:y=0


x=(20)/(9)=2.22222222222,\:z=-(20)/(9)-2.22222222222,\:y=0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Kavinsky

User Phil Gref
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories