Answer:
![((x-30)^(2))/(40^(2)) - ((y+15)^(2))/(3^(2)) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/wt647jw7yvj4wnfz0h2woaavi7d2aeionj.png)
Explanation:
The equation of the horizontal hyperbola in standard form is:
![((x-k)^(2))/(a^(2)) - ((y-k)^(2))/(b^(2)) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/pk4d6yzgjqsz91p29txijw8f6ol3j1icb2.png)
The position of its center is:
![C(x,y) = \left((-10 + 70)/(2), -15 \right)](https://img.qammunity.org/2021/formulas/mathematics/college/9f6myipqg228kuxkqdflwio9kpiuoomtdx.png)
![C(x, y) = (30,-15)](https://img.qammunity.org/2021/formulas/mathematics/college/b3jbv8j1byye1fmjf83itifornqm9kbdpc.png)
The values for c and a are respectively:
![a = 70 - 30](https://img.qammunity.org/2021/formulas/mathematics/college/f906iyoahs01gxn66lo0b9rmusjgboyrdp.png)
![a = 40](https://img.qammunity.org/2021/formulas/mathematics/college/iijryzdoaiatt2n1u61d3kncy4uzfq20m9.png)
![c = 30 - (-11)](https://img.qammunity.org/2021/formulas/mathematics/college/l62h90oihtco120t62f3d3plmt2y0iz7fm.png)
![c = 41](https://img.qammunity.org/2021/formulas/mathematics/college/yy0du2mv95r4bw4urdpcwgn2fbp6e7jly0.png)
The remaining variable is computed from the following Pythagorean identity:
![c ^(2) = a^(2) + b^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/6f5mm98lfnoxye2gt3kn7ttw9x3z68cy8c.png)
![b = \sqrt{c^(2)-a^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/o8lgiii0idm1f1hqmmpn4zloidcimc4pp7.png)
![b = \sqrt{41^(2)-40^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/xh6iljcqsv0ewhv93dr2lbpzvcde2m6fck.png)
![b = 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/929bv41yw5qny2tkx6l43zgjph1ql8kvki.png)
Now, the equation of the hyperbola is:
![((x-30)^(2))/(40^(2)) - ((y+15)^(2))/(3^(2)) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/wt647jw7yvj4wnfz0h2woaavi7d2aeionj.png)