128k views
2 votes
Consider the boundary-value problem introduced in the construction of the mathematical model for the shape of a rotating string: T d2y dx2 + rhoω2y = 0, y(0) = 0, y(L) = 0. For constants T and rho, define the critical speeds of angular rotation ωn as the values of ω for which the boundary-value problem has nontrivial solutions. Find the critical speeds ωn and the corresponding deflections yn(x). (Give your answers in terms of n, making sure that each value of n corresponds to a unique critical speed.)

1 Answer

1 vote

Answer:


y_n(x) =C_n \sin \sqrt{(\rho)/(T) } w_nx=C_n \sin \sqrt{(\rho)/(T) } \sqrt{(T)/(\rho) } (n \pi)/(L) x


y_n(x) = C_n \sin (n \pi x)/(L)

Step-by-step explanation:

The given differential equation is


T(d^2y)/(dx^2) + \rho w ^2y=0 and y(0) = 0, y(L) =0

where T and ρ are constants

The given rewrite as


(d^2y)/(dx^2) + (\rho w^2)/(T) y=0

auxiliary equation is


m^2+ (\rho w^2)/(T) =0\\\\m= \pm\sqrt{(\rho)/(T) } wi

Solution of this de is


y(x)=C_1 \cos \sqrt{(\rho)/(t) } wx + C_2 \sin \sqrt{(\rho)/(T) } wx

y(0)=0 ⇒ C₁ = 0


y(x) = C_2 \sin \sqrt{(\rho)/(T) } wx

y(L) = 0 ⇒


C_2 \sin \sqrt{(\rho)/(T) } wL=0

we need non zero solution

⇒ C₂ ≠ 0 and


\sin \sqrt{(\rho)/(T) } wL=0


\sin \sqrt{(\rho)/(T) } wL=0 \rightarrow \sqrt{(\rho)/(T) } wL=n \pi


w_n = \sqrt{(T)/(\rho) } (n \pi)/(L)

solution corresponding these
w_n values


y_n(x) =C_n \sin \sqrt{(\rho)/(T) } w_nx=C_n \sin \sqrt{(\rho)/(T) } \sqrt{(T)/(\rho) } (n \pi)/(L) x


y_n(x) = C_n \sin (n \pi x)/(L)

User Esafwan
by
6.8k points