Answer:
a). 8100 bacteria
b). 519 bacteria
c). Infinite
Explanation:
Population growth of a bacteria is given by the exponential function,
f(x) =
![P_(0)(1+(r)/(100))^(t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/29ibkskq9s4nh7b8lw3upoesa502a6yu3c.png)
Where f(x) = Population after time 't'
= Initial population
r = Growth rate
t = Duration after t hours
If "100 bacteria gets tripled every hour"
300 =
![100(1+(r)/(100))^(1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dxtq6a7tdgnnouft250f632iejt782galq.png)
3 = 1 +
![(r)/(100)](https://img.qammunity.org/2021/formulas/physics/high-school/nmjp26r86c0aizp9oolyi3kcyix940b6j6.png)
r = 100×(3 - 1)
r = 200
So the function is, f(x) =
![100(3)^(t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/egx1k8llppe780j7utq8gfx6sz9e0e8bkm.png)
a). Population after 4 hours,
f(4) =
![100(3)^(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6vx5poiazdf5c32z8szichla74zbitwmp4.png)
= 8100 bacteria
b). Population after 90 minutes Or 1.5 hours
f(1.5) =
![100(3)^(1.5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4rk0pjbayn6aj9k2uml26s1cwzqivyy6kr.png)
= 519.61
≈ 519 bacteria
c). Population after 72 hours,
f(72) =
![100(3)^(72)](https://img.qammunity.org/2021/formulas/mathematics/high-school/93mg8adt2ryuey260vq2dquu9hq034bna3.png)
= Infinite