Answer:
∠PQT = 72°
Explanation:
According to the diagram shown, ∠OPQ = ∠OQP = 18°. If PQT is a tangent to the circle, it can be inferred that line OQ is perpendicular to line QT. Ths shows that ∠OQT = 90°.
Also from the diagram, ∠OQP + ∠PQT = ∠OQT;
∠PQT = ∠OQT - ∠OQP
Given ∠OQP = 18° and ∠OQT = 90°
∠PQT = 90°-18°
∠PQT = 72°