68.6k views
5 votes
Find area of the shaded portion of the figure ​

Find area of the shaded portion of the figure ​-example-1
User Jacelyn
by
5.5k points

1 Answer

10 votes

Answer:


\sf C) \quad 57 \frac34 \:cm^2

Explanation:

To find the shaded area, subtract the area of the semicircle from the area of the rectangle.

Formulae


\textsf{Area of a rectangle}=\textsf{width} * \textsf{length}


\textsf{Area of a semicircle}=\frac12 \pi r^2 \quad \textsf{(where r is the radius)}


\textsf{Diameter of a circle}=2r \quad \textsf{(where r is the radius)}

Area of rectangle

Given dimensions of the rectangle:

  • width = 7 cm
  • length = 11 cm

Substituting these values into the formula:


\implies \textsf{Area}=\textsf{7} * \textsf{11}=77\: \sf cm^2

Area of semicircle

Diameter of semicircle = 11 - 2 - 2 = 7 cm

⇒ Radius (r) = 7 ÷ 2 = 3.5 cm


\textsf{let}\: \pi=(22)/(7)


\implies \textsf{Area}=\frac12 \left((22)/(7)\right) (3.5)^2=19.25\: \sf cm^2

Area of shaded region

= area of rectangle - area of semicircle

= 77 - 19.25

= 57.75


\sf =57 \frac34 \:cm^2

User Luka Kvavilashvili
by
5.9k points