114k views
4 votes
Simplify the given expression. Cite a property from Theorem 6.2.2 for each step. (A − (A ∩ B)) ∩ (B − (A ∩ B)) Let A and B be any sets. Then (A − (A ∩ B)) ∩ (B − (A ∩ B)) = = (A ∩ (A ∩ B)c) ∩ (B ∩ (A ∩ B)c) = A ∩ ((A ∩ B)c ∩ (B ∩ (A ∩ B)c)) = A ∩ (((A ∩ B)c ∩ B) ∩ (A ∩ B)c) = A ∩ ((B ∩ (A ∩ B)c) ∩ (A ∩ B)c) = A ∩ (B ∩ ((A ∩ B)c ∩ (A ∩ B)c)) = A ∩ (B ∩ (A ∩ B)c) = (A ∩ B) ∩ (A ∩ B)c = ∅

User Be Kind
by
8.5k points

1 Answer

7 votes

Answer:

Considere los conjuntos A y B

(A − (A ∩ B)) ∩ (B − (A ∩ B))

= (A ∩ (A ∩ B)c) ∩ (B ∩ (A ∩ B)c) por la ley de diferencia establecida

= (A ∩ (Ac ∩ B)c) ∩ (B ∩ (Ac ∩ B)c) por la ley de De Morgan

= {(A ∩ Ac) ∪ (A ∩ Bc)} ∩ {(B ∩ Ac) ∪ (B ∩ Bc)} por la ley distributiva

= {∅ ∪ (A ∩ Bc)} ∩ {(B ∩ Ac) ∪ ∅} complementando

= {A ∩ Bc} ∩ {B ∩ Ac} por ley de identidad

= (A ∩ Ac) ∩ (B ∩ Ac) por la ley asociativa

= ∅ ∩ ∅ complementando

= ∅ por la ley universal consolidada

Explanation:

User Koppor
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories