The percent of container B that is left after pumping the water of Container A full in it is 40 per cent .
Step by step Step-by-step explanation :
Given -
- Two containers ( Container A & Container B ) in shape of cylinders.
- Diameter of Container A = 6 feet
- Height of Container A = 18 feet
- Diameter of container B = 8 feet
- Height of Container B = 17 feet
To find -
The percent of container B that is left after pumping the water of Container A full in it.
Solution -
Firstly, we have to find how much water each container can hold i.e. volume of containers .
We know that -
![\boxed{ \mathfrak \purple{volume \: of \:cylinder = \pi {r}^(2) h} }](https://img.qammunity.org/2023/formulas/mathematics/college/8ykkmaoinm46pxhain7phn09fle3png058.png)
where, r is the radius of the cylinder & h is the height of the cylinder.
Now,
For Container A
Given, diameter = 6 feet
.•. Radius =
![(6)/(2)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/6zk866vdp1ja2fml8s8rgmluxt3y92rtor.png)
![= 3 \: \mathfrak{feet}](https://img.qammunity.org/2023/formulas/mathematics/college/zgx7mg8a2th79trmhnq6hx3vyt0si9f4bn.png)
Height = 18 feet
•.• Volume of Container A =
![(22)/(7) * {3}^(2) * 18](https://img.qammunity.org/2023/formulas/mathematics/college/lk7i9a35xu1lwjaajbutufnkz4gwzdzbdi.png)
![= (22)/(7) * 3 * 3 * 18](https://img.qammunity.org/2023/formulas/mathematics/college/sif6wb38b8mazei1r9mq32o94jsi24iq2n.png)
![= (3564)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/sbpmx6hvye0ox7qatcr084j21ua8vuwhow.png)
![= 509.142857 \:{ft.}^(3) \mathfrak{(approximately)}](https://img.qammunity.org/2023/formulas/mathematics/college/ubryumrlhcqosd7dg0jut1qw6dvfwqpmzn.png)
Rounding off to the nearest tenth . ..
![=> 510 \: \mathfrak{ {feet}^(3) }](https://img.qammunity.org/2023/formulas/mathematics/college/rcp8qqo4c7d4tn32q6yurcssjtygyvsycd.png)
For Container B
Given, Diameter = 8 feet
.•. Radius =
![(8)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r3nh5xoly512waz7qon4annd57vm3kmi0a.png)
![= 4 \: \mathfrak{feet}](https://img.qammunity.org/2023/formulas/mathematics/college/4swbum8fvguacvmlcrpxq08nlprnvja214.png)
Height = 17 feet
•.• Volume of Container B =
![(22)/(7) * {4}^(2) * 17](https://img.qammunity.org/2023/formulas/mathematics/college/ksjfnm5tuv9hw4rruo7kjjo0gpwsxw64je.png)
![= (22)/(7) * 4 * 4 * 17](https://img.qammunity.org/2023/formulas/mathematics/college/p1yp03kjy2kp97gr407l8033lurvcaefrk.png)
![= (5984)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/un19wfy6fopdazd9b0vbc3prqc9egok6jo.png)
![= 854.857143 \: {ft.}^(3) \mathfrak{(approximately)}](https://img.qammunity.org/2023/formulas/mathematics/college/g12osr7y2wpnh8l3lmb43yufc0oinpmbym.png)
Rounding off to the nearest tenth. ..
![=> 850 \: \mathfrak{ {feet}^(3) }](https://img.qammunity.org/2023/formulas/mathematics/college/ae19icwctliu5yp47ki8y1ysrq636a040r.png)
Now,
Volume container B that is left after pumping the water of Container A in it = Volume of Container B - Volume of Container A
= ( 850 - 510 ) ft^3
= 340 ft^3
Now ,
The percent of container B that is left after pumping the water of Container A in it = Volume container B that is left after pumping the water of Container A /Total volume of Container B × 100
![= (340)/(850) * 100](https://img.qammunity.org/2023/formulas/mathematics/college/bc2bqid82ng3u8bx1pyq954pozpncxoyg8.png)
![= \boxed{ 40 \: \%}](https://img.qammunity.org/2023/formulas/mathematics/college/c8vcxbb4mtx4ejm3m37htbj39qndi60cz2.png)