191k views
2 votes
If A= and B=, find BA.

If A= and B=, find BA.-example-1
User Tom Morgan
by
9.4k points

1 Answer

3 votes

Answer:

Option d.

Explanation:

The given matrices are


A=\begin{bmatrix}3&2&-4\\ \:5&-5&-3\\ \:4&1&1\end{bmatrix}


B=\begin{bmatrix}2&-4&1\\ \:5&-3&2\\ \:4&4&-5\end{bmatrix}

We need to find BA.


BA=\begin{bmatrix}2&-4&1\\ \:5&-3&2\\ \:4&4&-5\end{bmatrix}\begin{bmatrix}3&2&-4\\ \:5&-5&-3\\ \:4&1&1\end{bmatrix}


BA=\begin{bmatrix}2\cdot \:3+\left(-4\right)\cdot \:5+1\cdot \:4&2\cdot \:2+\left(-4\right)\left(-5\right)+1\cdot \:1&2\left(-4\right)+\left(-4\right)\left(-3\right)+1\cdot \:1\\ 5\cdot \:3+\left(-3\right)\cdot \:5+2\cdot \:4&5\cdot \:2+\left(-3\right)\left(-5\right)+2\cdot \:1&5\left(-4\right)+\left(-3\right)\left(-3\right)+2\cdot \:1\\ 4\cdot \:3+4\cdot \:5+\left(-5\right)\cdot \:4&4\cdot \:2+4\left(-5\right)+\left(-5\right)\cdot \:1&4\left(-4\right)+4\left(-3\right)+\left(-5\right)\cdot \:1\end{bmatrix}


BA=\begin{bmatrix}-10&25&5\\ 8&27&-9\\ 12&-17&-33\end{bmatrix}

Hence, option (d) is correct.

User Iambriansreed
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories