Answer:
Explanation:
What is the volume of a hemisphere with a diameter of 37.6 m, rounded to the of a cubic meter?
\text{Volume of a Sphere:}
Volume of a Sphere:
V=\frac{4}{3}\pi r^3
V=
3
4
πr
3
\text{radius} = \frac{\text{diameter}}{2} = \frac{37.6}{2}=18.8
radius=
2
diameter
=
2
37.6
=18.8
meters
\text{Plug in:}
Plug in:
\frac{4}{3}\pi (18.8)^3
3
4
π(18.8)
3
27833.1369876
27833.1369876
Use calculator
\text{Volume of Hemisphere HALF of Volume of Sphere:}
Volume of Hemisphere HALF of Volume of Sphere:
\frac{27833.1369876}{2}
2
27833.1369876
Divide volume by 2
13916.5684938
13916.5684938
\approx 13916.6\text{ m}^3
≈13916.6 m
3
Round to the nearest tenth